

Challenges and potential solutions to implement temporal aspects in INSPIRE specifications

Presentation to: INSPIRE Conference 2015, Lisbon

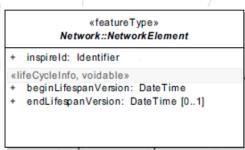
Author: Dominique Laurent

Date: 26th May 2015

ISN.15.064

ELF (European Location Framework) project

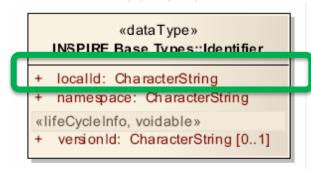
- ★ Main objectives
 - **★**Implement INSPIRE
 - Transform data (themes AD, AU, BU, CP, GN, HY, TN, EL, LC, ...) and set up download services
 - Offer operational platform for data and services
 - ★ Exploit this platform by applications
 - Internal products (BaseMap, GeoLocator, ELF Cadastre, ..)
 - Applications (internal: insurance, real estate .. + external application developers)
- ★ Main partners: NMCAs + technology providers
- ★ From 2013 to 2016
- ★50 % funded by European Commission




Theory: INSPIRE mechanism for incremental updates

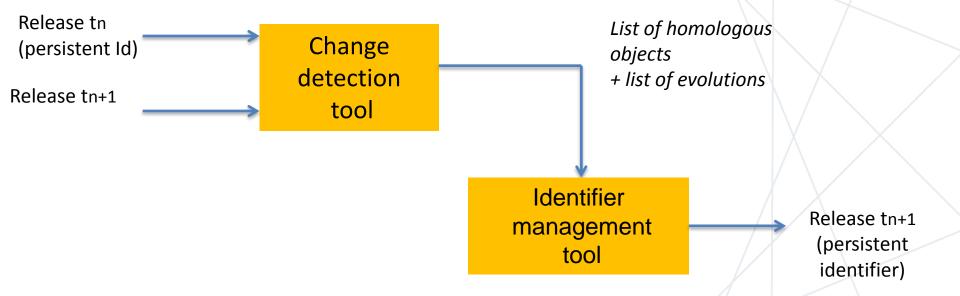
- Most of INSPIRE data models include:
 - ★ Inspire identifier
 - unique
 - persistent
 - ★ Temporal attributes related to the data base life-cycle
 - beginLifespanVersion
 - endLifespanVersion

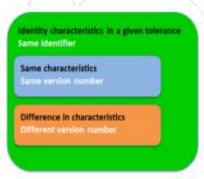
Versioning of objects



- \star Users can get incremental updates (e.g. evolutions between t_1 and t_2) just by querying on temporal attributes
 - ★ beginLifespanVersion after t₁ and before t₂ ⇒ to get new (created) objects or new versions of modified objects
 - ★ endLifespanVersion after t₁ and before t₂ ⇒ to get old (deleted) objects or old versions of modified objects

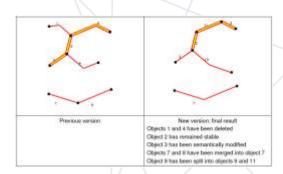
Practice: many issues

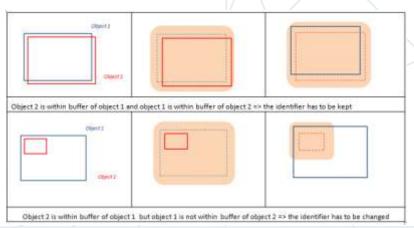

- Many data producers deliver only valid data (by regular releases) but do not give access to historical data
 - ★ => Users can't get information about old /deleted objets
- ★ Not always persistent identifiers
 - ★ Persistent identifiers missing in source data
 - ★ Persistent identifiers lost during the transformation process
 - Split features
 - Merge features
- ★ Temporal attributes
 - May be missing in source data
 - ★ May be no longer reliable due to transformation process
 - More data in source than in INSPIRE
 - » Overdetections
 - Main source data + ancillary data to fill INSPIRE (e.g. by joining tables)
 - » underdetections


The ELF proposal: the change detection tool

★ Principle: ensure persistent identifiers and provide temporal attributes, by comparing objects coming from 2 releases at t_n and t_{n+1}

- ★ The inspire identifier is about the database feature not about the real-world entity
- ★ General issue:
 - ★ When is an object considered as modified (same identifier, new version)?
 - ★ When it is considered as a new object (new identifier)?
- ★ An object is defined by a set of properties (geometry, semantic, ...)
 - ★ Significant change in main properties => new object => new identifier
 - Which are the main properties?
 - How big the change should be?
 - ★ Any other change => new version



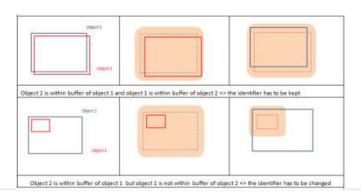


Persistent identifier rules: state-of-play

- ★ INSPIRE context
 - ★ No common rules
 - Life-cycle rules up to each data provider
 - Some good practice examples in the Methodology (guidelines for harmonisation)
- ★ ESDIN (ELF predecessor) project:
 - ★ Proposal for some common life-cycle rules for "simple" objects
- ★ Current IGN change detection tool
 - ★ Rules for "simple" objects
- ★ => in all existing rules, geometry is considered
 as main property, as identity property

Persistent identifier rules: new challenge

- Existing rules are based on simple objects, i.e. objects with single direct geometry
- ★ But INSPIRE data models include more complex patterns
 - ★ Objects with generic geometry (GM_Object, GM_Primitive)
 - ★ Objects with multiple representations (AD, BU, CP, ...)
 - ★ Objects with indirect geometry
 - Aggregate objects (set of other objects): Road, watercourseLinksequence, ...
 - TN properties attached to geometry by linear referencing
 - ★ Objects with no geometry at all : AD components
- ***** => need for new rules for persistent identifiers

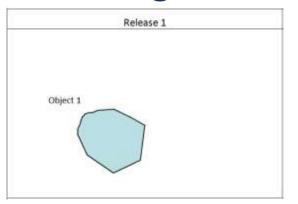


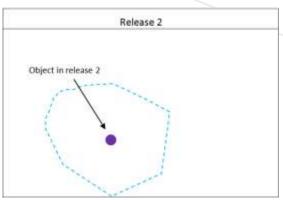
★ General rule:

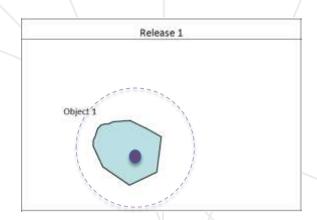
One of the identity characteristics of an object is its **classification**: in general, this classification is given by the **feature type**

NOTE: In some specifics cases, the feature type may be completed by a classification attribute (e.g. generic feature type such as NamedPlace, GovernmentalService).

- ★ Basic rule: **geometry is an identity characteristic for spatial objects**
 - * simple objects are homologous if they are in one another buffer

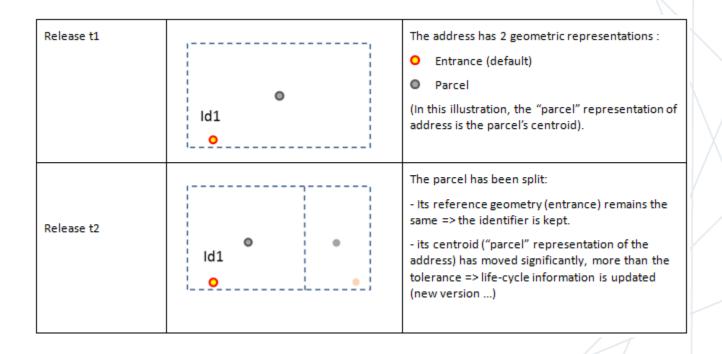



Buffer size is depending on data accuracy



Generic geometry

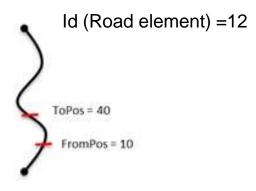
A small lake was represented as a surface in release 1 and then as a point in release 2


- ★ Proposed rule : geometry type is an identity characteristic
 - Even with staying in tolerance threshold, object 2 is considered as new object
 - Change detection tool will compare:
 - points with points
 - lines with lines
 - » surfaces with surfaces

Multiple representation

★ General rule:

The identity characteristic is the reference geometry

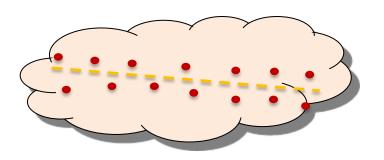

Indirect geometry: aggregate objects

- thematic identifier or geographical name(s) is an identity characteristic
- Coarse geometry checking (in case thematic id or name not unique)
 - by "wide" bounding box

Indirect geometry: TN properties

Scenario 1: relative location

ToPos = 40
FromPos = 10
Object Property

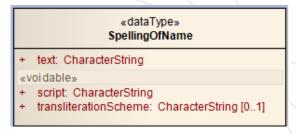

Scenario 2:object with derived (absolute) geometry

★ Proposed rule :

scenario 2 : absolute geometry is an identity characteristic

No geometry: AD components


In INSPIRE, ThoroughfareName has no geometry at all
But this geometry may be approximated by the cloud of AD points


- ★ Proposed rule for aggregate objects) :
 - thematic identifier or geographical name(s) is an identity characteristic
 - Coarse geometry checking (in case thematic id or name not unique)

Geographical names

★ What does it mean : same geographical name(s)?

- A feature may have one or several name(s) with attached metadata
 - » Selection rule for reference name(s) up to NMCA (e.g. status = official)
 - » Key metadata : language + nativeness
- A name may have several spellings
 - » Reference spelling : original one (without transliteration)
- Small change in spelling is acceptable

Conclusions

- ★INSPIRE mechanism (persistent id + temporal attributes) remains ideal solution; but it's achievable only if
 - ★ Data producers manage temporal aspects in source data
 - ★ Data producers give access to whole data set including historical data
 - ★ Source model is close to INSPIRE one
- => ... So it is not achievable by all data producers on short term
- ★ The change detection tool developed by ELF project may provide short-term solution (but not ideal one)

Conclusions

- ★ Life-cycle rules:
 - ★ Are currently up to each data provider
 - Existing life-cycle rules are mainly for simple features with direct single geometry
 - INSPIRE schemas include more complex modelling concepts
 - ELF has proposed rules for these specific cases
 - ★ Potential interest to propose more harmonised rules in INSPIRE?
 - ELF rules might be used as starting point in MIG to develop guidelines about temporal aspects